Case Study: Marine Plastic Debris and Solid Waste Management in Peru
Click here to open the Spanish version of the Case Study
Introduction
The negative impact of plastic debris on marine ecosystems and species is a global challenge. While the causes vary by region, most scientists agree that poor solid waste management is a leading factor. This is particularly true in the developing world, where infrastructure has not kept pace with economic growth. For the past several years, a range of public and private sector partners in Peru have worked to improve solid waste management—for human well-being and to reduce threats to marine ecosystems. Their work offers insight into effective strategies while also illuminating gaps in key data on the impact of plastic pollution on marine biodiversity. This case study includes a look at the challenges facing Peru, the strategies undertaken to date, and the types of additional data and interventions required to address this global issue at the local and national level.
The Global Challenge
Plastic debris is a persistent and ubiquitous global issue threatening marine life throughout the world’s oceans (Thevenon, Carroll and Sousa 2014; Jambeck, et al. 2015; Boucher and Friot 2017; The CADMUS Group 2018). Global plastic production has increased significantly, with more than 300 million metric tons of plastics currently produced annually, compared to 1.5 million metric tons in 1950 (Boucher and Friot 2017). As plastic consumption increases, so does solid waste and, ultimately, marine debris. Currently, plastic debris can be found in a wide range of sizes: from nanoplastics and microplastics, such as the ones used in synthetic textiles and tires (Ibid), to macroplastics, such as plastic bags.
A significant portion of marine plastic pollution is generated inland and transported to the coastal areas through rivers (Lebreton et al. 2017) and runoff (Boucher and Friot 2017). Industrial fisheries also contribute to marine plastic debris (Luna-Jorquera et al. 2019). On a global scale, the most significant polluting rivers are located in Asia (Lebreton, et al. 2019). Rivers in South America account for an estimated 4.8 percent of the river mass plastic input to the oceans (Ibid).
Most plastic debris remains near coastal areas for years, degrading ecosystems key to economic and human health. Over time, debris can be degraded and transported by ocean currents to open waters and gyres, where particles accumulate and create “garbage patches” (Lebreton, Egger, and Slat 2019; Thiel, et al. 2018). Plastics in the South Pacific Subtropical Gyre (SPSG) largely originate from debris in the coastal waters of the Humboldt Current, spanning across the coast of Chile and Peru (Thiel, et al. 2018). Marine protected areas located near the five oceanic gyres and garbage accumulation points are at risk of receiving large amounts of marine plastic debris, undermining efforts to protect local wildlife (Luna-Jorquera, et al. 2019).
Plastic debris has negative effects on marine wildlife, including entanglement, ingestion, the transport of invasive species, and toxic pollutants (Thevenon, Carroll, and Sousa 2014). Microplastics have been reported in a wide range of marine taxa, including amphipods living in six of the deepest marine ecosystems on Earth (Thiel et al., 2018; Jamieson, et al. 2019), pointing at the ubiquitous distribution of these particles. However, a nuanced understanding of the impact of plastic on the biology of specific marine species is still poorly understood. The risk of exposure to plastics and microplastics depends on the distribution and abundance of the plastics and the biology of the species (Thiel et al. 2018).
Until scientists collect more data on the impact of marine debris on species and ecosystems, public and private sector institutions are focusing on better solid waste management upstream to reduce the flow of plastic pollution. Of the 6,300 million metric tons of plastic waste produced globally as of 2015, 9 percent has been recycled, 12 percent has been incinerated, and about 79 percent has accumulated in landfills or in the natural environment (Geyer et al. 2017). At the current trend, 12 billion tons of plastic waste will accumulate in landfills and the natural environment by 2050 (Idem).
In many developing countries, the consumption of disposable goods has increased at a higher rate than the development of proper waste management practices and infrastructure (Jambeck, et al. 2015). Developing sustainable waste management systems requires several key strategies, including strengthening the capacity of public waste management authorities; closing the infrastructure gap; partnering with and building the capacity of the private sector and civil society organizations; and implementing adequate laws, regulations, and standards (The Cadmus Group 2018). Countries, including Peru, are increasingly taking bold measures to tackle plastic pollution. With over 3,000 km of coastline and home to some of the most polluted beaches in Latin America, Peru provides a model to better understand the relationship between marine plastic debris and solid waste management, and the types of interventions having a positive impact.